Simplifying Expressions

In this section we look at how to simplify expressions, in particular, how to remove brackets from both formulae and equations.

Collecting like terms

Examples

$$a + a + a = 3a$$

$$a+b+a = 2a+b$$

$$2y + 8y = 10y$$

$$x + x^2 + x^2 = x + 2x^2$$

Only like terms can be collected

Example 1

Simplify the following expressions,

(a)
$$4a + 2b + 3a + 6b$$

(b)
$$3x - 4y + 2x - y$$

(c)
$$x^2 + 4x + 2x^2 - x$$

(d)
$$4a^2 + a + 2a^2 - 3a$$

Solution

(a)
$$4a + 2b + 3a + 6b = 7a + 8b$$

$$4a + 2b + 3a + 6b = 7a + 8b$$
 (b) $3x - 4y + 2x - y = 5x - 5y$

(c)
$$x^2 + 4x + 2x^2 - x = 3x^2 + 3x$$

$$x^{2} + 4x + 2x^{2} - x = 3x^{2} + 3x$$
 (d) $4a^{2} + a + a^{2} - 3a = 6a^{2} - 2a$

Expanding Brackets

Every term in each bracket must be multiplied by every other item.

$$x(4x+2) = x \times 4x + x \times 2$$

$$(x+1)(x+4) = x \times x + x \times 4 + 1 \times x + 1 \times 4$$
$$= x^{2} + 4x + x + 4$$
$$= x^{2} + 5x + 4$$

Alternatively, you can expand brackets using the 'box' method, as shown opposite.

$$(x+1)(x+4) = x^2 + 1x + 4x + 4 = x^2 + 5x + 4$$

×	х	+1
X	x^2	+1 <i>x</i>
+4	+4x	+4

Example 2

Expand each of the following:

(a)
$$2(x+3)$$

(b)
$$4(2x-6)$$

(c)
$$x(x+2)$$

(d)
$$2x(3x-2)$$

Solution

(a)
$$2(x+3) = 2 \times x + 2 \times 3$$

= $2x + 6$

(b)
$$4(2x-6) = 4 \times 2x - 4 \times 6$$

= $8x - 24$

(c)
$$x(x+2) = x \times x + x \times 2$$

= $x^2 + 2x$

(d)
$$2x(3x-2) = 2x \times 3x - 2x \times 2$$

= $6x^2 - 4x$

Example 3

Expand,

(a)
$$(x+6)(x+3)$$

(a)
$$(x+6)(x+3)$$
 (b) $(x+4)(2x-5)$

Solution

(a)
$$(x+6)(x+3) = x \times x + x \times 3 + 6 \times x + 6 \times 3$$

= $x^2 + 3x + 6x + 18$
= $x^2 + 9x + 18$

or alternatively, using the box method,

×	х	+6
X	x^2	+6 <i>x</i>
+3	+3 <i>x</i>	+18

$$(x+6)(x+3) = x^2 + 6x + 3x + 18 = x^2 + 9x + 18$$

(b)
$$(x+4)(2x-5) = x \times 2x - x \times 5 + 4 \times 2x - 4 \times 5$$

= $2x^2 - 5x + 8x - 20$
= $2x^2 + 3x - 20$

Again, using the box method,

×	х	+4
2x	$2x^2$	+8 <i>x</i>
-5	-5x	-20

$$(x + 4)(2x - 5) = 2x^{2} + 8x - 5x - 20 = 2x^{2} + 3x - 20$$

Exercises

- Simplify each of the following by collecting like terms: 1.
 - (a) 4a + b + 2a
- (b) 4b + 2c + 6b + 3c
- (c) 4a + 5b a + 2b (d) 14p + 11q 8p + 3q
- (e) 6x 4y + 8x + 9y (f) 11x + 8y + 3z 2y + 4z
- (g) 16x 8y 3x 4y (h) 11y + 12z 10y + 4z + 2y
- 2. Simplify each of the following:
 - (a) $3x + 3x^2 + 4x x^2$ (b) $4y^2 + 4y 2y^2 + 3y$

 - (c) $a^2 + a + 3a^2 2a$ (d) $6x^2 + 12x 9x^2 + 3x$
- Expand each of the following expressions by multiplying out the brackets: 3.
 - (a) 3(x+6) (b) 4(x+2) (c) 3(x-1)

- (d) 4(2x+5) (e) 6(3x-5) (f) 7(2x-5)
- (g) 6(4-2x)
- (h) 8(3-5x) (i) 9(5x+10)
- Simplify each of the following expressions: 4.
 - (a) 2(x+3)+4(x+4) (b) 5(x-6)+2(x+3)

 - (c) 4(6-x)+7(2x+1) (d) 11(x-2)+4(7x+3)

 - (e) 8(x-6)+4(7-x) (f) 3(4-5x)+6(3x-2)
- Expand each of the following expressions by multiplying out the brackets: 5.
 - (a) x(x+3)
- (b) x(6x+1) (c) x(3x-2)
- (d) 2x(4-x) (e) 6x(2x+4) (f) 5x(3x-7)

- (g) 11x(x-3)
- (h) 14x(2+3x) (i) 6x(4-2x)

- Expand each of the following expressions by multiplying out the brackets: 6.
 - (a) (x+4)(x+3) (b) (x+2)(x+4) (c) (x+1)(x+5)
- (d) (x+6)(x-1) (e) (x-4)(x+2) (f) (x-3)(x+2)

- (g) (x-4)(x-5) (h) (x-3)(x-2) (i) (x-7)(x-9)
- 7. Simplify each of the following expressions:
 - (a) (x+2)(x+4)+(x+1)(x+2)
 - (b) (x+3)(x+7)+(x-1)(x+5)
 - (c) (x+6)(x+2)-(x-2)(x+3)
 - (d) (x-4)(x-8)-(x-1)(x-9)
- Expand each expression: 8.

 - (a) (2x+1)(3x+2) (b) (4x-7)(2x+1)

 - (c) (3x+5)(2x-8) (d) (4x+5)(3x-8)

 - (e) (8x+2)(3x-3) (f) (6x-5)(3x-7)
- Simplify: 9.
 - (a) (3x+2)(5x+9)+(4x-2)(3x-5)
 - (b) (4x+6)(5x+1)-(2x+3)(3x+1)
 - (c) (6x-5)(x+1)-(2x+7)(3x-5)
- 10. Expand:
 - (a) $(x+1)^2$
- (b) $(x-2)^2$
- (c) $(x+3)^2$

- (d) $(x+5)^2$
- (e) $(x-7)^2$
- (f) $(x-8)^2$

- (g) $(x+10)^2$
- (h) $(x-12)^2$
- (i) $(x+4)^2$

- (j) $(2x+3)^2$
- (k) (4x-7)
- (1) $(3x+2)^2$

- (m) $(4x+1)^2$
- (n) $(5x-2)^2$
- (o) $(6x-4)^2$

Expand: 11.

(a)
$$(x+1)(x-1)$$

(a)
$$(x+1)(x-1)$$
 (b) $(x+3)(x-3)$

(c)
$$(x+7)(x-7)$$
 (d) $(x+9)(x-9)$

(d)
$$(x+9)(x-9)$$

(e)
$$(x+12)(x-12)$$

(e)
$$(x+12)(x-12)$$
 (f) $(2x+1)(2x-1)$

(g)
$$(3x+2)(3x-2)$$

(g)
$$(3x+2)(3x-2)$$
 (h) $(4x+7)(4x-7)$

Expand: 12.

(a)
$$(x+1)^3$$

(b)
$$(2x+1)^3$$

(a)
$$(x+1)^3$$
 (b) $(2x+1)^3$ (c) $(x-5)^3$

Here are some algebra cards:

$$\begin{array}{c|c}
n+2 \\
n \\
n \\
n \\
n-2 \\
n^3
\end{array}$$

$$\begin{array}{c|c}
n+n \\
2n \\
2n-n \\
\end{array}$$

- One of the cards will always give the same answer as (a) Which card is it?
- One of the cards will always give the same answer as $n \times n$ (b) Which card is it?
- Two of the cards will always give the same answer as $2 \times n$ (c) Which cards are they?
- Write a new card which will always give the same answer as (d)

$$3n+2n$$
.

(KS3/97/Ma/Tier 5-7/P1)

14. (a) (i) The diagram shows a rectangle 18 cm long and 14 cm wide. It has been split into *four smaller rectangles*, A, B, C and D. Write down the *area* of each of the small rectangles. One has been done for you.

Area of Rectangle $C = 40 \text{ cm}^2$.

- (ii) What is the area of the whole rectangle?
- (iii) What is 18×14 ?
- (b) (i) The diagram shows a rectangle (n + 3) cm long and (n + 2) cm wide.

It has been split into four smaller rectangles.

Write down a *number* or an *expression* for the *area* of *each small rectangle*.

One has been done for you.

Area of Rectangle $F = 3n \text{ cm}^2$.

(ii) What is (n+3)(n+2) multiplied out? (KS3/99/Ma/Tier 5-7/P1)

- 15. Multiply out and simplify these expressions:
 - (a) 3(x-2)-2(4-3x)
 - (b) (x+2)(x+3)
 - (c) (x+4)(x-1)
 - (d) $(x-2)^2$

(KS3/98/Ma/Tier 6-8/P1)

16. A number grid is inside a large triangle.The small triangles are numbered consecutively.The diagram shows the first 4 rows.

- (a) An expression for the *last* number in row n is n^2 . Write an expression for the *last but one* number in row n.
- (b) An expression for the *first* number in row n is $n^2 2n + 2$. Calculate the value of the first number in row 10.
- (c) Make a copy of the table and complete it by writing an expression:

first number in row n	$n^2 - 2n + 2$
second number in row n	

(d) Make a copy of the table and complete it by writing an expression:

centre number in row n	$n^2 - n + 1$
centre number in row	$(n+1)^2 - (n+1) + 1$

(e) Multiply out and simplify the expression $(n+1)^2 - (n+1) + 1$. Show your working.

(KS3/99/Ma/Tier 6-8/P1)

11.3 Factorising

In this section we consider examples of the process of factorising, whereby the process of removing brackets is reversed and brackets are introduced into expressions.

Example 1

Factorise:

(a) 8x + 12 (b) 35x + 28

Solution

Note that both terms are multiples of 4, so we can write, (a)

$$8x + 12 = 4(2x + 3)$$

Here both terms are multiples of 7, so (b)

$$35x + 28 = 7(5x + 4)$$

Results like this can be checked by multiplying out the bracket to get back to the original expression.

Example 2

Factorise,

(a)
$$x^2 + 2x$$

(a)
$$x^2 + 2x$$
 (b) $3x^2 - 9x$ (c) $x^3 - x^2$

(c)
$$x^3 - x^2$$

Solution

Here, as both terms are multiples of x, we can write, (a)

$$x^2 + 2x = x(x+2)$$

In this case, both terms are multiples of x and 3, giving, (b)

$$3x^2 - 9x = 3x(x-3)$$

In this example, both terms are multiples of x^2 ,

$$x^3 - x^2 = x^2(x-1)$$

Sometimes it is possible to factorise in stages. For example, in part (b), you could have worked like this:

$$3x^{2} - 9x = 3(x^{2} - 3x)$$
$$= 3x(x - 3)$$

Example 3

Factorise:

(a)
$$r^2 + 9r + 18$$

(b)
$$x^2 + 2x - 15$$

(a)
$$x^2 + 9x + 18$$
 (b) $x^2 + 2x - 15$ (c) $x^2 - 7x + 12$

Solution

This expression will need to be factorised into two brackets: (a)

$$x^{2} + 9x + 18 = (x)(x)$$

As the expression begins x^2 , both brackets must begin with x. The two numbers to go in the brackets must multiply together to give 18 and add to give 9. So they must be 3 and 6, giving,

$$x^{2} + 9x + 18 = (x + 3)(x + 6)$$

You can check this result by multiplying out the brackets.

We note first that two brackets are needed and that both must contain an x, (b) as shown:

$$x^2 + 2x - 15 = (x)(x)$$

Two other numbers are needed which, when multiplied give -15 and when added give 2. In this case, these are -3 and 5. So the factorisation is,

$$x^{2} + 2x - 15 = (x - 3)(x + 5)$$

Check this result by multiplying out the brackets.

Again, we begin by noting that, (c)

$$x^2 - 7x + 12 = (x)(x)$$

We require two numbers which, when multiplied give 12 and when added give -7. In this case, these numbers are -3 and -4.

$$x^{2} - 7x + 12 = (x - 3)(x - 4)$$

Exercises

- Factorise: 1.
 - (a) 4x 2
- (b) 6x 12
- (c) 5x 20

- (d) 4x + 32
- (e) 6x 8
- (f) 8 12x

- (g) 21x 14
- (h) 15x + 20
- (i) 30 10x

- Factorise: 2.
 - (a) $x^2 + 4x$ (b) $x^2 3x$ (c) $4x x^2$

- (d) $6x^2 + 8x$ (e) $9x^2 + 15x$ (f) $7x^2 21x$
- (g) $28x 35x^2$ (h) $6x^2 14x$ (i) $5x^2 3x$

3. Factorise:

(a)
$$x^3 + x^2$$

(b)
$$2x^2 - x^3$$

(b)
$$2x^2 - x^3$$
 (c) $4x^3 - 2x^2$

(d)
$$8x^3 + 4x^2$$

(e)
$$16x^2 - 36x^3$$
 (f) $4x^3 + 22x^2$

(f)
$$4x^3 + 22x^2$$

(g)
$$16x^2 - 6x^3$$

(h)
$$14x^3 + 21x^2$$
 (i) $28x^3 - 49x^2$

(i)
$$28x^3 - 49x^2$$

(a) Expand (x + 5)(x - 5). 4.

- (b) Factorise $x^2 25$.
- (c) Factorise each of the following:

(i)
$$x^2 - 49$$
 (ii) $x^2 - 64$ (iii) $x^2 - 100$

(ii)
$$x^2 - 64$$

(iii)
$$x^2 - 100$$

(iv)
$$x^2 - a^2$$

(iv)
$$x^2 - a^2$$
 (v) $x^2 - 4b^2$

Factorise: 5.

(a)
$$x^2 + 7x + 12$$

(b)
$$x^2 + 8x + 7$$

(a)
$$x^2 + 7x + 12$$
 (b) $x^2 + 8x + 7$ (c) $x^2 + 11x + 18$

(d)
$$x^2 + 12x + 27$$

(e)
$$x^2 + 17x + 70$$
 (f) $x^2 + 6x + 8$

(f)
$$x^2 + 6x + 8$$

(g)
$$x^2 + 16x + 28$$

(h)
$$x^2 + 18x + 77$$

(g)
$$x^2 + 16x + 28$$
 (h) $x^2 + 18x + 77$ (i) $x^2 + 16x + 63$

Factorise: 6.

(a)
$$x^2 + x - 2$$

(a)
$$x^2 + x - 2$$
 (b) $x^2 + x - 20$ (c) $x^2 - x - 12$

(c)
$$x^2 - x - 12$$

(d)
$$x^2 - 13x + 36$$

(d)
$$x^2 - 13x + 36$$
 (e) $x^2 - 10x + 16$ (f) $x^2 + x - 42$

(f)
$$x^2 + x - 42$$

(g)
$$x^2 + 13x - 30$$

(g)
$$x^2 + 13x - 30$$
 (h) $x^2 - 17x + 72$ (i) $x^2 - 2x - 99$

(i)
$$x^2 - 2x - 99$$

The area of the rectangle shown is 7. $x^{2} - 5x$.

Express a in terms of x.

The area of the rectangle shown is 8. $x^2 + 11x + 30$.

Express a in terms of x.

The area of the triangle shown is 9.

$$\frac{1}{2}x^2 + \frac{3}{2}x - 5.$$

Express h in terms of x.

The area of the trapezium shown is 10.

$$\frac{1}{2}x^2 + 10x + 18.$$

Determine a.

11.4 Using Formulae

In this section we make use of formulae and develop simple formulae ourselves. First we begin with some revision of working with *negative numbers*.

Example 1

If a = 6, b = -5, c = -7 and d = 3, calculate:

(a)
$$a + c$$

(b)
$$a-b$$

(c)
$$bc$$

(a)
$$a + c$$
 (b) $a - b$ (c) bc (d) $b^2 + cd$

Solution

(a)
$$a+c = 6+(-7)$$

= 6-7
= -1

(b)
$$a-b = 6-(-5)$$

= 6+5
= 11

(c)
$$bc = (-5) \times (-7)$$

= 35

(d)
$$b^2 + cd = (-5)^2 + (-7) \times 3$$

= $25 + (-21)$
= $25 - 21$
= 4