Answers

Waiting Time (minutes)	Mid-point of bar (x)	Number of Customers (f)	(<i>fx</i>)
0 -	0.5	6	3
1 -	1.5	14	21
2 -	2.5	40	100
3 -	3.5	30	105
4 - 5	4.5	10	45
	Totals	100	274

(d) For example, record waiting times of customers at *all* check-outs.

(a)	Number of Nuts	Mid-point of Bar (x)	Number of Packets (f)	fx
	4 - 6	5	26	130
	7 - 9	8	33	264
	10 -12	11	20	220
	13 - 15	14	15	210
	16 - 18	17	6	102
		Totals	100	926

Mean number of nuts in a packet
$$=\frac{926}{100}=9.26$$

- 12 packs (b)
- Ranges cannot be worked out exactly as the original raw data has been grouped. However, (c) the range for nuts could only be as high as 18 - 4 = 14, whilst the range for raisins could be as high as 30 - 6 = 24 but only as low as 26 - 10 = 16. This shows that the chart for raisins (chart B) exhibits the greater range.

(d)
$$\frac{59}{100} = 0.59$$
 (or 59%) (e) $\frac{6}{100} \times \frac{23}{100} = \frac{138}{10000} = 0.0138$ (or 1.38%)
8.3 Plotting Scatter Diagrams
1. (a) A (b) A
(c) B (d) C
2. (a) See diagram opposite
(b) Weak/moderate positive correlation
3. (a) Scatter graph
(b) Any correlation is entirely coincidental!

8.2

8.

1.

2.

3.

8.3

- (b) Strong negative correlation
- 5. (a) Positive correlation for children of a restricted age range (e.g. 5 to 13) but no correlation if you include older teenagers.
 - (b) No correlation
 - (c) Possibly strong positive correlation in a single, smallish geographical area. For wider areas with greater mix of housing, little or no correlation.
 - (d) Positive correlation

8.3

Answers

8.	(a)	Mass of Tomatoes 400 400 400 400 400 400 400 4					
	(b)	Positive correlation					
9.	(a)	Mean score $\geq 60 \Rightarrow$ total score $\geq 3 \times 60 = 180$ \Rightarrow score in Game C $\geq 180 - 62 - 53 = 65$;					
		so he needs to score at least 65 in Game C.					
	(b)	Imran's Scores304050					
		Nia's Scores 35 40 45					
	(c)	Game A and Game B – positive relationship Game A and Game C – no relationship					

(d) Game B and Game C – no relationship

8.4 Lines of Best Fit

