Simultaneous Linear Equations

A pair of equations which use both terms at the same time, such as

$$
\begin{aligned}
& x+2 y=8 \\
& 2 x+y=7
\end{aligned}
$$

are known as a pair of simultaneous equations.

Worked Example 1

Solve the pair of simultaneous equations

$$
\begin{aligned}
& x+2 y=8 \\
& 2 x+y=7
\end{aligned}
$$

Solution

First it is helpful to label the equations (1) and (2).

$$
\begin{align*}
& x+2 y=8 \tag{1}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

Equation (1) is multiplied by 2, so that it contains the same number of x 's as equation (2).

Let the new equation be labelled (3).

$$
\begin{align*}
& 2 x+4 y=16 \tag{3}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

Equation (2) is now subtracted from equation (3).

$$
\begin{align*}
2 x+4 y & =16 \tag{3}\\
2 x+y & =7 \tag{2}\\
\hline 3 y & =9
\end{align*}
$$

Solving $3 y=9$ gives $y=3$.

This value of y can now be substituted into equation (1) to give:

$$
\begin{aligned}
x+2 \times 3 & =8 \\
x+6 & =8
\end{aligned}
$$

Solving this gives $x=2$. So the solution to the equation is $x=2, y=3$.

Worked Example 2

Solve the simultaneous equations

$$
\begin{aligned}
3 x+5 y & =2 \\
-4 x+7 y & =-30
\end{aligned}
$$

Solution

First label the equations (1) and (2) as shown below.

$$
\begin{align*}
3 x+5 y & =2 \tag{1}\\
-4 x+7 y & =-30 \tag{2}
\end{align*}
$$

Then multiply equation (1) by 4 and equation (2) by 3 to make the number of x 's in both equations the same.

$$
\begin{align*}
12 x+20 y & =8 \\
-12 x+21 y & =-90
\end{align*}
$$

Now add together equations (3) and (4) to give

$$
\begin{align*}
12 x+20 y & =8 \\
-12 x+21 y & =-90 \\
41 y & =-82
\end{align*}
$$

Solving the equation $41 y=-82$ gives $y=-2$.

This value for y can be substituted into equation (1) to give

$$
\begin{array}{r}
3 x+5 \times(-2)=2 \\
3 x-10=2 .
\end{array}
$$

Solving this equation gives:

$$
\begin{aligned}
3 x-10 & =2 \\
3 x & =12 \\
x & =\frac{12}{3} \\
& =4
\end{aligned}
$$

So the solution is $x=4$ and $y=-2$.

Note

It is a good idea to check that solutions are correct by substituting these values back into the original equations. Here,

$$
3 \times 4+5 \times(-2)=2
$$

and

$$
-4 \times 4+7 \times(-2)=-30
$$

You must check both equations to make sure that you have the correct answer.

Worked Example 3

Denise sells 300 tickets for a concert. Some tickets are sold to adults at $£ 5$ each and some are sold to children at $£ 4$ each. If she collects in $£ 1444$ in ticket sales, how many tickets have been sold to adults and how many to children?

Solution

Let $\quad x=$ number of adults' tickets
and $\quad y=$ number of children's tickets.

She has sold 300 tickets, so

$$
x+y=300
$$

The value of the adult tickets sold is $£ 5 x$, and the value of the children's tickets is $£ 4 y$. As the value of all the tickets sold is $£ 1444$, then

$$
5 x+4 y=1444
$$

The two simultaneous equations

$$
\begin{align*}
x+y & =300 \tag{1}\\
5 x+4 y & =1444 \tag{2}
\end{align*}
$$

can now be solved. First multiply equation (1) by 5 and subtract equation (2) to give

$$
\begin{align*}
5 x+5 y & =1500 \\
5 x+4 y & =1444 \\
\hline y & =56 \tag{2}
\end{align*}
$$

This value can then be substituted into equation (1) to give

$$
\begin{aligned}
x+56 & =300 \\
x & =244
\end{aligned}
$$

So the solution is $x=244$ and $y=56$. That is, 244 adults' tickets and 56 children's tickets have been sold.

Investigation

Consider the following simultaneous equations.

$$
\begin{align*}
& 2 x+y=6 \\
& x=1-\frac{1}{2} y \tag{2}
\end{align*}
$$

If (2) is substituted for x into (1), then

$$
\begin{aligned}
2\left(1-\frac{1}{2} y\right)+y & =6 \\
2-y+y & =6 \\
2 & =6!
\end{aligned}
$$

Find out where the problem lies.

Exercises

1. Solve each pair of simultaneous equations.
(a) $x+2 y=5$
(b) $3 x+2 y=19$
(c) $\quad x-2 y=4$
$3 x+y=5$
$x+5 y=15$
$4 x+3 y=49$
(d) $2 x+3 y=14$
(e) $3 x+4 y=2$
$5 x+2 y=24$
$7 x-5 y=9$
(f) $\quad 4 x+2 y=16$
$-3 x+2 y=-19$
(g) $5 x+y=2$
(h) $6 x-4 y=12$
(i) $7 x-2 y=23$
$-9 x+2 y=-66$
$3 x+4 y=39$
(j) $8 x+4 y=7$
(k) $4 x-2 y=-0.1$
(1) $6 x-5 y=41$
$-12 x+8 y=-6$
$5 x+2 y=1.5$
$4 x+15 y=31$
(m) $\quad \begin{aligned} & -2 x+5 y=14 \\ & 10 x+7 y=26\end{aligned}$
(n) $\quad \begin{aligned} 8 x+5 y & =-29 \\ 3 x-7 y & =-2\end{aligned}$
(o) $\quad 6 x-5 y=-14$
$18 x-4 y=6$
(p) $6 x-8 y=-2$
$5 x+2 y=1.8$
(q) $\frac{1}{2} x-\frac{1}{4} y=0$
$\frac{1}{3} x+\frac{2}{3} y=10$
(r) $\quad \frac{1}{5} x-\frac{1}{10} y=-1$
$\frac{1}{4} x+\frac{1}{2} y=10$
2. Find the coordinates of the point of intersection of the lines:
(a) $x+y=8$ and $y=2 x-1$
(b) $x+y=10 \quad$ and $\quad y=2 x+1$
(c) $x+y=4 \quad$ and $\quad y=2-\frac{x}{10}$
3. Describe the problems you encounter when you try to solve the simultaneous equations:

$$
\begin{aligned}
& 3 x-2 y=8 \\
& 9 x-6 y=2 .
\end{aligned}
$$

4. (a) Check that $x=2$ and $y=5$ is a solution of both the equations below.

$$
\begin{aligned}
x+2 y & =12 \\
3 x+6 y & =36
\end{aligned}
$$

(b) Try to solve the equations. What happens?
(c) Write both equations in the form $y=\ldots$ and comment on the equations you obtain.

